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Abstract

The formulation and implementation of higher-order accurate temporal schemes for dynamic unstructured mesh prob-
lems which satisfy the discrete conservation law are presented. The general approach consists of writing the spatially-
discretized equations for an arbitrary-Lagrange–Eulerian system (ALE) as a non-homogeneous coupled set of ODE�s
where the dependent variables consist of the product of the flow variables with the control volume. Standard application
of backwards difference (BDF) and implicit Runge–Kutta (IRK) schemes to these ODE�s, when grid coordinates and
velocities are known smooth functions of time, results in the design temporal accuracy of these schemes. However, in
general, these schemes do not satisfy the GCL and are therefore not conservative. Using a suitable approximation of
the grid velocities evaluated at the locations in time prescribed by the specific ODE time integrator, a GCL compliant
scheme can be constructed which retains the design temporal accuracy of the underlying ODE time integrator. This con-
stitutes a practical approach, since the grid velocities are seldom known as continuous functions in time. Numerical exam-
ples demonstrating design accuracy and conservation are given for one, two, and three-dimensional inviscid flow problems.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

High fidelity time-accurate fluid flow simulations are becoming increasingly important as practitioners seek
to model more complex physical problems, and computational costs continue to decrease. However, time-
accurate computational fluid dynamic (CFD) problems remain several orders of magnitude more expensive
than equivalent steady-state problems, thus prompting the search for more efficient and accurate algorithms.

For problems with appreciable separation in time and spatial scales, such as unsteady aerodynamics, aeroe-
lastics, and other moving body problems, where the time scale of the body motion is far removed from the
characteristic fluid time scales, implicit time-integration schemes are required for practical solution methods.
In many cases, this is achieved using operator splitting algorithms or backwards-difference schemes
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[8,15,21,16]. While the vast majority of time-accurate implementations rely on schemes which are second-order
accurate in time, recent work has shown the benefits of using higher-order time-integration strategies, such as
third-order backwards difference schemes or up to fourth-order implicit Runge–Kutta schemes [10,2,9]. Higher-
order time-integration schemes achieve equivalent accuracy, while using larger time steps, which results in fewer
function evaluations (i.e., residual evaluations and implicit system solutions) for a given level of accuracy.
While the benefits of higher-order time-integration schemes increase for higher accuracy tolerances, these
methods have been shown to be effective at reducing overall solution time even for relatively low error toler-
ances typical of engineering type calculations [2,9].

However, the majority of the work on high-order time accuracy has been performed for cases involving
static grids. There exists a large class of problems involving relative body motion, such as aeroelastics, which
require the use of dynamically deforming computational meshes. The objective of this paper is to extend the
formulation of high-order time-accurate methods devised for static mesh applications to dynamic mesh prob-
lems, using unstructured ALE type meshes for geometric flexibility. Previous work has shown the importance
of respecting the discrete conservation law (GCL) for structured and unstructured dynamic mesh problems.
Briefly stated, the GCL corresponds to the statement that no disturbances should be introduced by any arbi-
trary mesh motion for a uniform flow.

The original statement of the GCL dates back to [20] for structured meshes. The GCL has been discussed in
the context of aeroelastic problems for structured grids [6], and unstructured grids [24,18,21,14,12,7,5], and
has been formulated for higher-order accurate spatial schemes on structured meshes as well [22]. For aeroelas-
tic problems, severe degradation in overall simulation accuracy has been shown when the GCL is not re-
spected, which may result in erroneous flutter boundary predictions [12]. Thus, the correlation of the GCL
with time accuracy has been implied in most previous studies, although until recently [5], a quantitative study
of the GCL on time accuracy had not been performed. For example, increased solution accuracy has been
demonstrated by respecting the GCL on unstructured meshes in [12], and for high-order spatial schemes on
structured meshes in [22], but in neither case is the design accuracy of the temporal scheme demonstrated
either analytically, or through a time-step refinement study.

A notable contribution was the proof that respecting the GCL is a sufficient condition for achieving first-
order temporal accuracy [7]. More recently, a precise derivation of the time accuracy of various GCL-compli-
ant and non-compliant schemes has been performed in [5]. This study has shown, perhaps surprisingly, that
respecting the GCL is not a necessary condition for achieving the design temporal accuracy of the underlying
time-integration scheme. Furthermore, while respecting the GCL remains a sufficient condition for achieving
first-order temporal accuracy, it is not a sufficient condition for obtaining the design accuracy of the under-
lying time-integration scheme (when the latter is higher than one) [5]. On the other hand, it has also been
shown that respecting the GCL is a necessary and sufficient condition for preserving the non-linear stability
of the underlying time-integration scheme [4]. This provides a strong incentive for constructing time-integra-
tion schemes which respect the GCL.

In order to devise higher-order time-accurate schemes for dynamic meshes, the interplay between the GCL
and the time accuracy of the resulting scheme must be better understood. In this paper, we will argue that the
role of the GCL is not related to time accuracy. Rather, the GCL is a conservation statement, and just as one
can construct spatially conservative and non-conservative schemes of any order of accuracy, we will demon-
strate both high-order accurate temporal schemes which violate and respect the GCL. In the interest of reduc-
ing overall sources of errors and preserving non-linear stability, we then concentrate on the formulation of
high-order time-accurate (up to fourth-order) schemes for dynamic meshes which respect the GCL.

2. Governing equations in arbitrary-Lagrangian–Eulerian (ALE) form

The Navier–Stokes equations in conservative form can be written as:
oU

ot
þr � ðFðUÞ þGðUÞÞ ¼ 0; ð1Þ
where U represents the vector of conserved quantities (mass, momentum, and energy), F(U) represents the
convective fluxes and G(U) represents the viscous fluxes. Integrating over a (moving) control volume X(t),
we obtain:
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Z
XðtÞ

oU

ot
dV þ

Z
oXðtÞ

ðFðUÞ �~nÞdSþ
Z
oXðtÞ

ðGðUÞ �~nÞdS ¼ 0. ð2Þ
Using the differential identity
o

ot

Z
XðtÞ

UdV ¼
Z
XðtÞ

oU

ot
dV þ

Z
oXðtÞ

Uð _x �~nÞdS; ð3Þ
where _x and ~n are the velocity and normal of the interface oX(t), respectively, Eq. (2) becomes:
o

ot

Z
XðtÞ

UdV þ
Z
oXðtÞ

ðFðUÞ � _xUÞ �~ndSþ
Z
oXðtÞ

GðUÞ �~ndS ¼ 0. ð4Þ
Considering U as cell averaged quantities, these equations are discretized in space as:
o

ot
ðVUÞ þ RðU; xðtÞ; _xðtÞ;~nðtÞÞ þ SðU; xðtÞ;~nðtÞÞ ¼ 0; ð5Þ
where RðU; xðtÞ; _xðtÞ;~nðtÞÞ ¼
R
oXðtÞðFðUÞ � _xUÞ �~ndS represents the discrete convective fluxes in ALE form,

SðU; xðtÞ;~nðtÞÞ represents the discrete viscous fluxes, and V denotes the control volume. In the discrete form,
_xðtÞ and ~nðtÞ now represent the time varying velocities and surface normals of the control volume boundary
faces, while x(t) denotes the mesh point positions. Note that the normals are computed from the mesh point
positions, (i.e.,~nðtÞ ¼~nðxðtÞÞ), so that we may drop the~nðtÞ argument in the operators in the above equation.

3. The discrete geometric conservation law (GCL)

The discrete geometric conservation law requires that the state U = constant be an exact solution of Eq. (5).
In this case, we have S(U,x) = 0, since the viscous fluxes are based on gradients of U. Additionally, we have:
Z

oXðtÞ
ðFðUÞ � _xUÞ �~ndS ¼ RðU; x; _xÞ ¼ �U�Rðx; _xÞ; ð6Þ
since the integral of the convective fluxes F(U) around a closed control volume must be zero for constant U,
for any spatially conservative scheme, with U�R referring to the discretization of the second term in the above
boundary integral. Dividing through by U, the GCL can be stated, in semi-discrete form as:
oV
ot

� �RðxðtÞ; _xðtÞÞ ¼ 0. ð7Þ
There are various ways in which the GCL may be satisfied. One approach [6] consists of adding the difference
oV
ot � �RðxðtÞ; _xðtÞÞ as a source term to the right-hand side of Eq. (5), thus ensuring that U = constant is a solu-
tion of Eq. (5), even in cases where Eq. (7) is not satisfied. Another approach consists of rewriting Eq. (5) as:
V
oU

ot
þU

oV
ot

þ RðU; xðtÞ; _xðtÞÞ þ SðU; xðtÞÞ ¼ 0 ð8Þ
and then evaluating the volume derivative as
oV
ot

¼ �RðxðtÞ; _xðtÞÞ; ð9Þ
which automatically satisfies the GCL. However, as discussed in [22], this approach is not strictly conservative.
While these approaches have been used in various structured grid calculations, the temporal accuracy of these
schemes has not been addressed.

For dynamic unstructured meshes, fully conservative GCL compliant schemes are generally constructed
after the integration of Eq. (5) in time. For example, for inviscid flows, using a second-order backwards dif-
ference scheme (BDF2), Eq. (5) is written as [14]:
3

2
VUnþ1 � 2VUn þ 1

2
VUn�1 ¼ �Dt

XKf

k¼1

akRðUnþ1; xk; _xkÞ. ð10Þ
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The evaluation of Un+1 = U(tn+1) on the right hand side of Eq. (10) along with the condition
PKf

k¼1ak ¼ 1 en-
sures this scheme recovers the standard backwards difference scheme in the absence of mesh motion. However,
the apparent ambiguity of where to evaluate the grid coordinates and velocities in time is used as a degree of
freedom in order to satisfy the GCL condition:
3

2
V nþ1 � 2V n þ 1

2
V n�1 ¼ Dt

XKf

k¼1

ak �Rðxk; _xkÞ. ð11Þ
Because the left-hand side of Eq. (11) can be calculated exactly, since the grid point positions (and thus
V(t)) are known exactly as a function of time, this equation can be used to determine the values xk, and
_xk which result in the BDF scheme of Eq. (10) satisfying the GCL. A related approach, which is compu-
tationally less expensive, consists of using a single residual evaluation with averaged grid metrics and veloc-
ities as [12]:
3

2
VUnþ1 � 2VUn þ 1

2
VUn�1 ¼ �DtRðUnþ1; �n; �_nÞ ð12Þ
with
�n ¼
XKf

k¼1

aknðxkÞ; �_n ¼
XKf

k¼1

ak _nðxk; _xkÞ; ð13Þ
using Eq. (11) to determine the values of n(xk) and _nðxk; _xkÞ, which represent the face normals and face normal
integrated velocities, which appear explicitly in the ALE residual formulations, and which are functions of the
mesh point positions and velocities. It is easily verified that both schemes obey the GCL condition, and both
schemes reduce to the standard BDF2 scheme for static meshes. However, to determine the temporal accuracy
of these schemes in the presence of dynamic meshes, a full Taylor series expansion in time is required, as
described in [5]. The simultaneous requirement of second-order accuracy, and satisfying the GCL, results
in the determination of the coefficients ak and the k locations in time (tk = tn + hkDt, 0 < hk < 1) for evaluating
the mesh positions and velocities. However, the extension of this procedure to high-order temporal discreti-
zations represents a difficult task [23].
4. GCL and time accuracy

In this work, we take an alternative point of view for deriving high-order time-accurate GCL compliant
schemes. Of interest is to better understand the role of the GCL in determining the time accuracy of a scheme,
since in the above approaches, both GCL and time-accuracy requirements are considered concurrently. We
begin by examining the issue of time accuracy alone, returning subsequently to the incorporation of a GCL
condition. Our starting point is the semi-discretized equation (5), which was obtained by discretizing the gov-
erning equations in space. This represents a system of coupled ordinary differential equations which must be
integrated in time. The time accuracy of ODE integrators is well understood, and has been used to devise accu-
rate methods for time-dependent flows on static meshes in previous work. It is worth noting at this stage, that
the standard form for a system of ODEs is often written as:
dy

dt
¼ fðy; tÞ; ð14Þ
where y(t) represents the solution vector. For static mesh problems, Eq. (5) reduces to
V
o

ot
ðUÞ þ RðUÞ þ SðUÞ ¼ 0; ð15Þ
which dividing through by V, which is now a constant, can be seen to correspond to a system of ODEs of the
homogeneous form:
dy

dt
¼ fðyÞ; ð16Þ
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resulting in straightforward application of ODE integrators to the semi-discrete equations. However, for dy-
namic mesh problems, Eq. (5) must be re-written in a form analogous to (14) prior to the application of ODE
integration schemes. This can be achieved by first noticing that the dependent variable in (5) is no longer U,
but VU. Consequently, Eq. (5) is re-written as:
o

ot
ðVUÞ ¼ �RðVU; V ; xðtÞ; _xðtÞ;~nðtÞÞ � SðVU; V ; xðtÞ;~nðtÞÞ. ð17Þ
Furthermore, since the volume V is computed using the grid point coordinates, we have V = V(x(t)), and the V
arguments in the right-hand-side operators may be omitted, since their dependence is reflected in the argument
x(t) of these operators. Additionally, the grid velocities appear only as integrals along face normals, so that we
may define the integrated face velocities as _nðtÞ ¼ _x �~n, finally leading to the form:
o

ot
ðVUÞ ¼ �RðVU; xðtÞ; _nðtÞÞ � SðVU; xðtÞÞ. ð18Þ
Thus, if the grid point positions and velocities are known functions of time, the above may be written as
o

ot
ðVUÞ ¼ �RðVU; tÞ � SðVU; tÞ ¼ QðVU; tÞ; ð19Þ
which is of the form of Eq. (14). Applying any ODE time-integration scheme to Eq. (19), the design temporal
accuracy of the scheme must be recovered, provided the right-hand side of Eq. (19) is a sufficiently smooth
function of time (and of VU), the degree of which depends on the particular ODE integration scheme. Fur-
thermore, there is no ambiguity as to where the grid coordinates and velocities should be evaluated. These
are dictated by the chosen ODE integration scheme, and if these are evaluated elsewhere, design accuracy can-
not be guaranteed. For example, the general form for a k-step backwards difference scheme applied to Eq. (19)
can be written as:
ðVUÞnþ1 �
Xk�1

i¼0

aiðVUÞn�i ¼ DtbkQððVUÞnþ1
; tnþ1Þ. ð20Þ
Thus, for a backwards-difference (BDF) scheme, the grid coordinates and velocities in the residual should only
be evaluated at the new time step location n + 1. The second-order accurate (BDF2) scheme, which will be
used in the subsequent numerical examples, is obtained by setting k = 2 and using the coefficients a0 ¼ � 4

3
,

a1 ¼ 1
3
, b2 ¼ 2

3
.

The general form for an s-stage implicit Runge–Kutta scheme applied to Eq. (19) is given as:
ðVUÞk ¼ ðVUÞn þ Dt
Xs
j¼1

akjQððVUÞj; tn þ cjDtÞ; k ¼ 1; . . . ; s; ð21Þ

ðVUÞnþ1 ¼ ðVUÞn þ Dt
Xs
j¼1

bjQððVUÞj; tn þ cjDtÞ; ð22Þ
where the n and n + 1 superscripts on the dependent variable refer to the values at the beginning and end of the
current time step, and the k and j superscripts refer to stage values computed by the Runge–Kutta scheme
within the current time-step. Once again, it is clear from Eq. (21) that the grid coordinates and velocities
are to be evaluated at the locations in time defined precisely by the cj coefficients of the Runge–Kutta scheme
itself. In the following examples, we will concentrate on the Explicit first-stage, Single diagonal coefficient,
Diagonally Implicit class of RK schemes (ESDIRK). The coefficients for the considered schemes can be rep-
resented by the Butcher tableau [3], where the numerical values of the coefficients for the scheme used in this
work are given in Appendix. These schemes are characterized by a lower triangular form of the coefficient ta-
ble, thus resulting in a single implicit solve at each individual stage. The ck ¼

Pk
j¼1akj, k = 1, . . . ,s coefficients

denote the corresponding point in time for each individual stage, which fixes the evaluation of grid coordinates
and velocities. The first stage is explicit (a1j = 0), and the last stage coefficients are such that akj = bj,
j = 1, . . . ,s, which omits the requirement of evaluating Eq. (22), since the value of (VU)n+1 at the new time step
is given by the last stage value (VU)k=s. These properties ensure that the first and last stage values are identical
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to the time-integrated solution values in the RK scheme (i.e., avoiding the requirement of making any distinc-
tion between the estimated stage value and the final solution value at these points in time) which is consistent
with the fact that the function V(t) is single valued in time, thus simplifying our subsequent consideration of
the GCL (see Table 1).

As an illustrative example, we consider a one-dimensional inviscid compressible flow problem, namely
Sod�s shock-tube problem with the conditions:
Table
Butche

c1 = 0
c2
c3
c4
c5
c6 = 1

wn+1
q ¼ 1; p ¼ 105; u ¼ 0; �L 6 x < 0;

q ¼ 0:125; p ¼ 104; u ¼ 0; 0 6 x 6 L;
ð23Þ
where q, p, u represent fluid density, pressure and velocity, respectively, and L = 10. The computational do-
main contains 1001 grid points. A dynamically deforming mesh is obtained by forcing the grid points in the
region �L/3 < x < L/3 to oscillate about their mean (equispaced) position according to:
DxðtÞ ¼ AðxÞ sinðftÞ; ð24Þ

where Dx(t) represents the deviation from the initial equispaced grid point locations. The frequency is taken as
f = 900p and the amplitude A(x) is prescribed as a sin function which vanishes at �L/3 and at L/3. This
smooth variation in the amplitude, and the vanishing motion near the boundaries is used to avoid possible
boundary effects on the subsequent accuracy study. The shock-tube problem is solved on this dynamically
deforming mesh using a second-order backwards differencing scheme BDF2, and a six stage, fourth-order
accurate implicit ESDIRK Runge–Kutta scheme, IRK64, which has been previously employed for static mesh
simulations [2,9] (see Appendix for complete description of scheme coefficients). A typical solution, in terms of
the density profile at t = 0.01, is shown in Fig. 1. In both cases, the exact analytical values for the mesh point
positions and velocities are used in the time-integration procedure. We denote this approach as Scheme A, for
both the BDF2 and IRK64 cases. Fig. 2 depicts the error as a function of time-step size, for the solution inte-
grated from t = 0 to t = 0.01. The error is defined as the L2 norm of the difference of all the conservative flow
variables at all grid points between the current solution and a reference solution, which is obtained using the
IRK64 scheme with a very fine time step of 6.25 · 10�7 (i.e., 10 times smaller than the smallest time step used
in the tested cases). The slope of the error curves in log–log format is 1.9 for the BDF2 scheme, and 3.5 for the
IRK64 scheme, which is close to design accuracy for both schemes.

It is easily verified, either analytically or numerically, that the GCL is not satisfied by Scheme A, which
employs exact analytical values of the grid coordinates and velocities, using either the BDF2 or IRK64 time
integrators. This example demonstrates the fact that the GCL is not a necessary condition for achieving design
accuracy of a particular time-integration scheme, as was previously shown in [5].

On the other hand, it is a relatively simple task to construct a BDF scheme or IRK scheme which obeys the
GCL. Consider the following scheme, denoted as Scheme B, and derived following the procedure described in
[19], for IRK integrators. For each Runge–Kutta stage (or quadrature point) k, we define the average interface
velocity and normal as:
_x
nþk
2 ¼ xk � xn

ckDt
; ~n

nþk
2 ¼ 1

2
ð~nn þ~n

kÞ ð25Þ
and perform stage updates as:
1
r tableau for the ESDIRK class of RK schemes with number of stages, s = 6

0 0 0 0 0 0
a21 a66 0 0 0 0
a31 a32 a66 0 0 0
a41 a42 a43 a66 0 0
a51 a52 a53 a54 a66 0
b1 b2 b3 b4 b5 a66

b1 b2 b3 b4 b5 a66
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ðVUÞk ¼ ðVUÞn � Dt
Xk
j¼1

akjRðUk; V k; _x
nþk
2 ;~n

nþk
2 Þ; k ¼ 1; . . . ; s; ð26Þ
where the viscous flux operator S(U,x(t)) has been dropped for this inviscid flow test case. This scheme sat-
isfies the GCL at each Runge–Kutta stage. However, the error plot for this scheme applied to the dynamic
mesh shock-tube problem results in curves with a final slope of 1.9, as shown in Fig. 2, which is far removed
from the fourth-order design accuracy of the underlying IRK scheme.

An alternate Runge–Kutta-based GCL satisfying scheme, denoted as Scheme C is constructed by using the
single values
_x ¼ xnþ1 � xn

Dt
; ~n ¼ 1

2
ð~nn þ~n

nþ1Þ ð27Þ
for grid face velocities and normals, which are used at each Runge–Kutta stage, while redefining the volume at
each stage as:
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V k ¼ V n þ ckðV nþ1 � V nÞ. ð28Þ

The achieved temporal accuracy of this scheme for the shock-tube problem is again seen to fall below design
accuracy, from the error curves in Fig. 2. Because both of these schemes are designed to satisfy the GCL, and
both schemes revert to the standard IRK64 scheme for static meshes, these examples illustrate that the GCL is
not a sufficient condition for recovering the design accuracy of the underlying static grid time-integration
scheme, when applied to dynamic mesh problems, as was also shown in [5].

There are various reasons to explain why these schemes do not recover design accuracy on dynamic meshes.
For scheme B, the fact that the grid coordinates (normal vectors) are not evaluated precisely at the quadrature
points of the RK scheme is sufficient to corrupt the temporal accuracy of the scheme. However, the evaluation
of the grid velocities as averages between initial and stage values is also questionable, as the function _xðtÞ, and
thus the entire right-hand side of Eq. (20) is no longer a differentiable function of time, as is required in the
Runge–Kutta theory [3,13].

The question thus becomes how to construct a Runge–Kutta scheme which evaluates the terms x(t) and _xðtÞ
at the specified quadrature points, and which at the same time obeys the GCL. Our initial example, where the
grid coordinates and velocities are prescribed functions of time, is somewhat unrealistic, in that analytic
expressions for these quantities are seldom available. However, the grid-point coordinates are usually avail-
able as a function of time, particularly if the grid deformation is governed by the solution of a set of partial
differential equations (Poisson equation, linear elasticity) as is often the case [1,17,23]. On the other hand, the
grid velocities are seldom available as a function of time, and are most often obtained by finite differencing
the grid point coordinate function. The approximation of the grid velocities, evaluated at the RK quadrature
points, provides the added degree of freedom necessary to devise an RK scheme which also obeys the GCL. In
the following scheme, denoted as Scheme D, we assume that the grid point coordinates are known functions of
time, and that all quantities are evaluated at the quadrature points. Each stage of the Runge–Kutta scheme is
given as:
ðVUÞk ¼ ðVUÞn � Dt
Xk
j¼1

akjRðUj; xj; _njÞ k ¼ 1; . . . ; s ð29Þ
with the corresponding values: xj = x(t + cjDt), and _nj ¼ _xðt þ cjDtÞ �~nðt þ cjDtÞ, with the values of the cj being
given by the RK scheme. While the grid point coordinates may be evaluated directly at these locations in time,
the face integrated velocities _n must be estimated. These estimates are constructed such that the GCL is sat-
isfied. Setting U = constant in Eq. (29), we obtain the GCL condition at each RK stage as:
V k � V n ¼ Dt
Xk
j¼1

akj �Rð _njÞ k ¼ 1; . . . ; s. ð30Þ
The �R operator corresponds to a discrete surface integral, which is obtained as a summation over individual
control volume faces:
�Rð _njÞ ¼
XFaces
E¼1

_njE. ð31Þ
Because the volume computation can also be formulated as a sum over control volume faces, we may require
Eq. (30) to hold at each individual control volume face of the discrete integral:
ðV k � V nÞE ¼ Dt
Xk
j¼1

akj _n
j
E k ¼ 1; . . . ; s; ð32Þ
where (Vk�Vn)E denotes the volume swept by an individual control volume boundary face, which is associated
with a mesh edge for vertex-based finite-volume discretizations, and _njE represents the unknown value of the
face integrated grid velocity at the jth RK stage. Because the grid coordinates (and thus control volumes val-
ues) are known functions of time, the left hand-side of Eq. (32) can be evaluated exactly, and the _njE unknowns
can thus be obtained by solving the system (given here for a four stage RK scheme):
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; ð33Þ
where the explicit first stage a11 = 0 (cf. Table 1) corresponds to equating _n1E with the value determined at the
end of the previous time step. Because the IRK64 scheme is an SDIRK (single coefficient diagonally implicit
RK) scheme, the matrix of akj coefficients is of lower triangular form, and Eq. (33) is easily solved by forward
substitution.

This scheme is used to solve the shock-tube problem and the error convergence curve is plotted in Fig. 2,
using a reference solution obtained with the same scheme with a smaller time step of 6.25 · 10�7. The slope of
the error curve is nearly identical to that obtained with the analytical values of grid coordinates and velocities,
and is close to the design accuracy of the scheme. We have thus demonstrated a scheme which is both GCL
compliant, and fourth-order accurate in time.

It should be noted that in all cases, the error is measured as the difference between the computed solution
and a reference solution, where the reference solution is obtained using the same corresponding scheme with a
much smaller time step. Because we are only considering time accuracy, and excluding spatial accuracy effects,
the possibility that the various schemes may not converge to the same solution as Dt ! 0 (due for example to
conservation errors), makes it important to use the corresponding scheme for the reference solution for time-
accuracy studies. Fig. 3 illustrates details of the differences in the shock-tube density profile for Schemes A and
D using the same time step Dt = 0.0002. While the profile is smooth for Scheme D, oscillations are present in
the density profile computed by Scheme A. These errors are attributed to the lack of conservation due to the
violation of the GCL in this scheme, and their behavior is consistent with the statement that the GCL is nec-
essary and sufficient for non-linear stability [4]. These oscillations have been found to decrease with smaller
time steps, however, it has not been determined whether the two schemes converge to the same solution in
the limit of small time steps.

Although the numerical evidence demonstrates approximate design accuracy for Scheme D, in this partic-
ular case, a complete error analysis would be required to prove the formal order of accuracy of this scheme. A
simpler approach is to examine the conditions under which the scheme is known to deliver design accuracy.
Consider the case, where the volume swept by an edge VE(t) can be expressed as a fourth-order polynomial in
time p4(t). Thus, we have
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oV E

ot
¼ _nE ¼ p3ðtÞ; ð34Þ
where p3(t) denotes a third-order polynomial in time. In two dimensions, this would be the case, for example, if
the grid coordinates are given as x(t) = p2(t), i.e., a second-order polynomial in time. Use of the exact (ana-
lytic) values of the grid coordinates and the grid face-averaged velocities in the Runge–Kutta scheme will re-
sult in design accuracy, as demonstrated by Scheme A previously. Additionally, because the IRK64 scheme
integrates a third-order polynomial exactly, Eq. (32) is automatically satisfied, and the approximate _nE values
derived from equation (33) coincide with the exact values. Thus, for V(t) = p4(t), Schemes A and D are equiv-
alent, and both achieve design accuracy and obey the GCL simultaneously.

If the function x(t) is such that the resulting V(t) is not four times differentiable, then the GCL will be re-
spected, as long as Eq. (32) is satisfied, but design accuracy will be lost, since the resulting function RðU; x; _nÞ
will not meet the smoothness requirements of the RK scheme. For problems where the mesh motion is gov-
erned by a set of partial differential equations, achieving high temporal accuracy requires a smooth x(t) var-
iation, which implies the specification of a smooth boundary motion in time, and convergence of the mesh
motion equations at each step to a suitable tolerance, which can be assumed to be of the same order as the
convergence tolerance used for the implicit flow solver at each Runge–Kutta stage. The common practice
of only partially converging the mesh motion equations in order to reduce computational costs, under the
assumption that a valid mesh with positive cell volumes is all that is required at each time step, may thus result
in the loss of higher-order temporal accuracy.

On the other hand, if the mesh motion x(t) is such that the resulting volume V(t) is a higher-order polyno-
mial in time (higher than order 4), or any four times differentiable non-polynomial function, the use of ana-
lytical values for _nE will not satisfy the GCL, as equation (32) will not be satisfied in general. However, Eq.
(32) or (33) may be viewed as a third-order polynomial interpolation for _nE within a given time step, since it is
exact for _nE ¼ p3ðtÞ. Therefore, for smooth enough x(t) and V(t), we may write:
_nEjapproxðtÞ ¼ _nEðtÞ þOðDtÞ4; ð35Þ
where _nEjapproxðtÞ represents the approximations of the exact _nEðtÞ obtained through Eq. (33), and our GCL
compliant RK scheme is obtained by replacing the original ODE (cf. Eq. (18)) by the following ODE:
o

ot
ðVUÞ ¼ �RðVU; xðtÞ; _nðtÞ �OðDtÞ4Þ � SðVU; xðtÞÞ; ð36Þ
where x(t) and _nðtÞ denote exact values. This equation is then integrated in time in the standard manner using
the RK scheme. The remaining assumption, stated without proof, is that the differences between the solutions
of the original and modified ODEs are of the same order as the temporal error of the RK scheme, thus pre-
serving the design accuracy of the RK scheme while respecting the GCL. This also implies that the conserva-
tion errors introduced by the violation of the GCL when using the exact analytic values of x(t) and _nðtÞ are
also of order O(Dt)4.

5. Remaining considerations

The above one-dimensional example has proven useful in studying the effect of the GCL on time accuracy
and in devising a time-accurate implicit Runge–Kutta scheme which respects the GCL. In this section, we dis-
cuss the extension of these ideas to backwards-difference schemes, to multiple dimensions, and to viscous
flows.

The derivation of a GCL compliant BDF scheme can be constructed in a similar fashion as discussed for
IRK schemes. For a BDF scheme, all grid coordinates and face-averaged normal velocities should be evalu-
ated at the n + 1 time level, as dictated by Eq. (20). Setting U = constant,we obtain the discrete GCL
condition:
V nþ1 �
Xk�1

i¼0

aiV n�i ¼ Dtbk

XFaces
E¼1

_nnþ1
E . ð37Þ
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The left-hand-side, which can be computed exactly, may also be written as a linear combination of the incre-
mental changes in volume between the various time levels, which themselves may be decomposed into the ele-
mental volumes swept by each control volume boundary face between time levels. The equality is then
required to hold for each moving control volume boundary face, leading to:
_nnþ1
E ¼ 1

Dt

Xk
i¼1

ciDV
i
E; ð38Þ
where DV i
E ¼ V iþ1

E � V i
E, represents the volume swept by the boundary face E between the two time levels i and

i + 1, and the ci coefficients are determined such that:
Xk
i¼1

ciDV
i
E ¼ 1

bk
V nþ1 �

Xk�1

i¼0

aiV n�i

 !
. ð39Þ
For a BDF2 scheme (i.e., a0 ¼ � 4
3
, a1 ¼ 1

3
, b2 ¼ 2

3
) this yields the coefficients (c1 ¼ � 1

2
, c2 ¼ 3

2
). This method is

applicable to any BDF scheme (BDF2, BDF3). In Fig. 2, the error curve for the one-dimensional dynamic
mesh shock tube problem described above is shown, using a BDF2 scheme, which satisfies the GCL in the
above manner, denoted as Scheme D. The figure reveals a slope for the error curve of 1.9, demonstrating de-
sign accuracy for this scheme.

A key feature of our GCL formulation, is the ability to compute the volume swept by a control volume
boundary face exactly, as given by the right-hand sides of Eq. (33) for the Runge–Kutta schemes and Eq.
(38) for the BDF scheme, given the function x(t). In one-dimension, this computation is trivial, as the control
volume consists of a linear segment, and the control volume ‘‘faces’’ correspond to the two end-points of the
segment. The volume swept by these faces is thus simply equal to the displacement of the end-points.

In two-dimensions, the control-volume boundary faces constitute straight-line segments. In the case of con-
stant grid velocities (or at least constant velocity directions), the volume swept by these moving edges is equal
to the area inside the quadrilateral formed by joining the initial and final points of the edge extremities, as
shown in Fig. 4. This area can be computed exactly using a trapezoidal integration rule. While this integration
is not exact for arbitrary grid velocities (time varying velocity directions), it is sufficient to yield the exact
change in total control volume area when the contribution from all edges of a control volume are summed
together, since the change in the control volume areas depend only on the initial and final states of the grid
point coordinates. This is sufficient for the purposes of satisfying the GCL.

Likewise, in three-dimensions, the exact computation of the volume swept by a control-volume boundary
face, under the assumption of constant grid velocities, is sufficient to yield the exact change in the control vol-
ume regardless of the actual variation of the grid velocities in time. For cell centered schemes on tetrahedra,
control volume boundary faces consist of planar triangular elements, while on vertex-centered tetrahedral
schemes, these consist of composite triangular faces associated with a mesh edge. In both cases, it is sufficient
to consider the volume swept by a triangular face as its vertices move with a constant velocity between two
time steps, as depicted in Fig. 5. The resulting space-time element constitutes a prismatic element, for which
the quadrilateral faces are not necessarily planar, due to the different velocity vectors at the three vertices. (In
fact, the volume of the prismatic element could even be negative). As pointed out in [14], a two-point integra-
tion rule (in time) is required to evaluate these volumes exactly. However, in this case, this is only used to com-
pute the swept face volume, which is then used on the right-hand sides of Eqs. (33) and (38), rather than for
directly evaluating grid coordinates and velocities as in [14]. For the BDF2 scheme described above, the face
integrated velocities _nE reduce to the same expressions derived in Scheme A of [5], although the overall
schemes are not identical, since as stated above, the other grid metrics (in the convective terms) are not eval-
uated in the same manner.

Currently, the discussion has centered on the inviscid flow equations. For viscous flows, since the viscous
fluxes vanish in the case of uniform flow, the GCL will automatically be satisfied, provided the underlying
inviscid flow solver satisfies the GCL. However, the time accuracy of the scheme may be compromised if
the viscous flux terms are not evaluated appropriately in time [11]. Since these terms do not depend on the
grid velocities, and since the grid coordinates are known functions of time, we have:
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SðVU; xðtÞÞ ¼ SðVU; tÞ ð40Þ

and the viscous fluxes must therefore be evaluated at the locations in time determined by the specific ODE
integration scheme, i.e., S(VUn+1, tn+1) for BDF schemes, and at the stage value locations (or quadrature
points) given by tj = tn + cjDt for the Runge–Kutta schemes. This approach is consistent with the formulation
for the viscous terms given in [5], and with the findings in [11], where the evaluation of viscous terms at the old
time step tn were demonstrated to result in lower time accuracy, while it is at odds with the evaluation of the
grid metrics at the mid-point tnþ

1
2 ¼ 1

2
ðtn þ tnþ1Þ advocated in [11] for the viscous terms.

6. Multi-dimensional results

In the following examples, the second-order accurate backwards difference (BDF2) scheme and fourth-
order six-stage ESDIRK Runge–Kutta (IRK64) scheme, which were derived above to be GCL compliant
(i.e., Schemes D), are demonstrated on a two-dimensional and a three-dimensional dynamic mesh inviscid flow
problem.

In two dimensions, we consider the inviscid transonic flow over a pitching NACA0012 airfoil about its
quarter-chord point, with the airfoil incidence prescribed as a sinusoidal function of time, with a mean inci-
dence of 0.016, and an amplitude of 2.51�. The freestream Mach number for this case is 0.755, and the
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reduced frequency of the periodic airfoil motion is fc
U ¼ 0:1628, where f is the frequency of oscillation, c is

the airfoil chord, and U is the freestream flow velocity. The two-dimensional unstructured mesh used for
this case is depicted in Fig. 6. This mesh contains a total of 4379 vertices. At each time step, the outer
boundary of the mesh is held fixed, while the airfoil surface mesh points are constrained to follow the airfoil
motion. The location of the interior mesh points is then computed at each time-step (or IRK stage) by solv-
ing a set of partial-differential equations derived using a spring analogy (whereby each mesh edge is modeled
as a non-linear spring) subject to these boundary conditions [23]. Both the mesh motion equations, and the
flow equations are converged to machine precision at each stage of the RK scheme, and at each time step of
the BDF scheme, in order to ensure smooth variations of the mesh coordinates as a function of time, and to
avoid contamination of the temporal error with algebraic error. Fig. 7 depicts the lift coefficient as a func-
tion of angle of attack for this periodic motion, calculated using 8 and 64 time-steps per period using the
BDF2 and the IRK64 GCL compliant schemes. The accuracy of the IRK64 scheme using only 8 time steps
per period is seen to be close to that achieved by the BDF2 scheme using 64 time steps per period, and is
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almost indistinguishable from the IRK64 scheme using 64 time steps. Fig. 8 shows the convergence of tem-
poral error with time step refinement for both schemes. The error is measured as the L2 norm of the dif-
ference of all the conservative flow variables between the computed solution integrated from t = 0 to t = 54,
and that of a highly resolved solution using the IRK64 scheme with a time step of 0.16875, which corre-
sponds to 256 times steps per period. The slope of the error curves is 1.9 for the BDF2 scheme and 3.5
for the IRK64 scheme.

A three-dimensional inviscid flow test case is constructed by forced twisting of an ONERA M6 wing, at a
Mach number of 0.755, and an incidence of 0.016�. A periodic pitching motion is prescribed at the quarter
chord point of the wing tip, with a reduced frequency of 0.1628 and an amplitude of 2.51�. The wing root
is held fixed, and a linear variation of the pitching motion is prescribed between the wing tip and root, thus
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Fig. 8. Comparison of computed temporal errors for GCL compliant BDF2 and IRK64 schemes for pitching NACA0012 airfoil case at
time t = 54.

Fig. 9. Unstructured tetrahedral mesh for three-dimensional twisting ONERA M6 wing test case.
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resulting in a twisting motion. A fully tetrahedral mesh, shown in Fig. 9, is used for this case, containing 53961
vertices. Mesh deformation is computed at each time-step or stage by solving the spring-analogy equations
subject to a fixed outer-boundary condition. Both the mesh motion and flow equations are converged to
machine precision at each stage or time step, as in the two-dimensional case. The computed lift coefficient ver-
sus time is shown in Fig. 10 for the IRK64 scheme, showing good temporal accuracy for the IRK64 scheme
using as few as 8 time steps per period. Fig. 11 illustrates the computed temporal error as a function of the
time-step for both schemes, at the time t = 54, using a highly resolved IRK64 solution with a time step of
0.3375, (corresponding to 128 time steps per period) as the reference solution. The slope of the error curve
achieved for the BDF scheme is 2, while the IRK64 scheme results in an error curve slop of 3.3. As in the
two-dimensional case, the IRK64 scheme generally achieves equivalent accuracy using time steps which are
up to an order of magnitude larger than the BDF2 scheme.
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Fig. 10. Lift coefficient as a function of tip incidence for twisting ONERA M6 wing case as computed by IRK64 GCL compliant scheme.
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7. Conclusions

A general framework for deriving high-order temporal schemes which respect the GCL has been proposed
in this work. In contrast to previous work, where the evaluation of grid coordinates and velocities is performed
at various locations in time, in order to satisfy the GCL, the current approach evaluates these quantities pre-
cisely at the time locations dictated by the ODE time-integration scheme, but employs approximations to the
grid face-integrated velocities at these locations in time to satisfy the GCL. It is then demonstrated that design
temporal accuracy of the BDF2 and IRK64 schemes is approximately preserved, since the error involved in
the grid velocity approximations is of the same order or smaller than the temporal errors of the scheme.

On the other hand, a formal accuracy proof remains to be given. This entails demonstrating that the errors
between the solution of the exact system of ODEs and the modified system of ODE�s using an approximate
grid velocity function are of the same order or less than the temporal errors of the time-integration scheme.
This is a non-trivial task for Runge–Kutta schemes, and the possibility of order-reduction at small error tol-
erances for the RK schemes must also be considered [3].

Nevertheless, the numerical experiments indicate that temporal accuracy close to the design order of the
respective schemes is achieved over a range of accuracy levels, and the superior accuracy of the IRK64 scheme
over the BDF2 scheme, which has previously been documented for static grid cases, is demonstrated for
dynamic grid cases. The IRK64 scheme generally achieves equivalent accuracy using time steps which are
up to an order of magnitude larger than the BDF2 scheme. On the other hand, the IRK64 scheme requires
more implicit solutions per time step. In previous work, the overall cost per delivered accuracy of these
schemes has been studied, indicating that the IRK schemes can be a factor of two to four times more efficient
for moderate engineering-type accuracy levels [2,9] on static grids. A similar study remains to be done for
dynamic mesh motion cases.

Finally, under the current approach, the extension to viscous flows appears to be straightforward, as dis-
cussed in Section 5. Future work will examine the accuracy of these schemes for viscous flow applications on
dynamic meshes.
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Appendix. Butcher coefficients for IRK64 scheme
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